Практическое применение B-сплайна (B-Spline) в программировании

Полтора дня разбирался в работе B-сплайна и как это применяется на практике. Хочу поделиться с вами результатами моих изысканий.

Немного теории

Допустим, у вас есть некий массив точек размером n. Что вам потребуется для работы B-сплайна:

  • определить количество интерполируемых точек (от этого зависит скорость работы, гладкость получившейся кривой и размер формулы для вычисления, количество точек равно k+1)
  • избавится от рекурсии формулы для вычисления

Общая формула для расчета коэффициентов:

    \begin{equation*}N_{i,k}(x)=\frac{x-t_i}{t_{i+k-1}-t_i}N_{i,k-1}(x)+\frac{t_{i+k}-x}{t_{i+k}-t_{i+1}}N_{i+1,k-1}(x)\end{equation*}

Формула рекурсивная и заканчивается на k равном единице:

    \begin{equation*}   N_{i,1}(x)=\left\{\begin{array}{cr}1&\text{if }t_i\leq x\textless t_{i+1}\\0&\mathrm{otherwise}\quad\end{array}\right.\end{equation*}

Пояснения к формуле:

  • если делитель получается равным или близким по значению к нулю, значит вся дробь равна нулю
  • параметр i — это индекс текущей точки
  • x — значение от i до i + 1 с нужным вам шагом (например, i равно 7, и нам нужно создать 3 точки для интерполяции, значит берем x равным 7.0, 7.5, 8.0)
  • t — неубывающий массив индексов

Вычисление элементов массива t:

    \begin{equation*}   t=\left\{\begin{array}{ll}0,&\mathrm{if}\ i<k\\i-k+1,&\mathrm{if}\ k\leq{i}\leq{n}\\n-k+2,&\mathrm{if}\ i>n\end{array}\right. \end{equation*}

Практика

Мне нужно было интерполировать по четырем точкам, поэтому я заранее на бумажке вычислил формулу без рекурсии:

    \begin{equation*}   N_{i,3}(x)=\left\{\begin{array}{ll}0,&\mathrm{if}\ x\textless t_{i}\\\frac{x-t_i}{t_{i+2}-t_i}*\frac{x-ti}{t_{i+1}-ti},&\mathrm{if}\ t_i\leq x\textless t_{i+1}\\\frac{x-ti}{t_{i+2}-ti}*\frac{t_{i+2}-x}{t_{i+2}-t_{i+1}}+\frac{t_{i+3}-x}{t_{i+3}-t_{i+1}}*\frac{x-ti}{t_{i+2}-t_{i+1}},&\mathrm{if}\ t_{i+1}\leq x\textless t_{i+2}\\\frac{t_{i+3}-x}{t_{i+3}-t_{i+1}}*\frac{t_{i+3}-x}{t_{i+3}-t_{i+2}},&\mathrm{if}\ t_{i+2}\leq x\textless t_{i+3}\\0,&\mathrm{if}\ x\geq t_{i+3}\end{array}\right. \end{equation*}

Про бумажку я, конечно, соврал, мне было удобнее сделать функцию на питоне вот такого вида:

def div(a, b):
    try:
        return a / float(b)
    except ZeroDivisionError:
        return 0
 
def N(i, k, x, t):
    if 1 == k:
        if t[i] <= x < t[i + 1]:
            return 1.0
        return 0.0
    a = div(x - t[i], t[i + k - 1] - t[i]) * N(i, k - 1, x, t)
    b = div(t[i + k] - x, x[i + k] - x[i + 1]) * N(i + 1, k - 1, x, t)
    return a + b

После этого добавил условие k==2 и все возможные возвращаемые значения в зависимости от x, затем условие k==3, значения которого зависят от k==2. Может вам будет удобнее все это сделать на бумажке.

Наконец можно приступать к интерполяции. Формула такая:

    \begin{equation*}   \sum\limits_{i}^{i+k}=\vec{p_{i}}N_{i,k}(x) \end{equation*}

Если индекс точки меньше нуля, берем нулевую точку, если индекс точки больше размера массива, то берем последнюю точку в массиве.

Небольшой пример

У нас есть некий массив точек, нам надо интерполировать с пятой по шестую точки с шагом 0.25, при этом $k$ равно 3 (значит для интерполяции нужно взять четыре точки).

     \begin{equation*}   p_0=p_5*N_{0,3}(0.0)+p_6*N_{1,3}(0.0)+p_7*N_{2,3}(0.0)+p_8*N_{3,3}(0.0) \end{equation*}

     \begin{equation*}   p_1=p_5*N_{0,3}(0.25)+p_6*N_{1,3}(0.25)+p_7*N_{2,3}(0.25)+p_8*N_{3,3}(0.25) \end{equation*}

     \begin{equation*}   p_2=p_5*N_{0,3}(0.5)+p_6*N_{1,3}(0.5)+p_7*N_{2,3}(0.5)+p_8*N_{3,3}(0.5) \end{equation*}

     \begin{equation*}   p_3=p_5*N_{0,3}(1.0)+p_6*N_{1,3}(1.0)+p_7*N_{2,3}(1.0)+p_8*N_{3,3}(1.0) \end{equation*}

Итого четыре новых точки вместо двух.

Спасибо за внимание, надеюсь нигде не ошибся. На несложные вопросы по теме могу ответить в комментариях.

Комментариев нет. Будьте первым!
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Блог Евгения Жирнова